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A b s h c i  We presenl a simple and fast method for calculating Ihe localizalion length 
and density of states of disordered onedimensional systems The method is based on 
a multiple-scattering picture of transpon in disordered media and draws fmm transfer 
matrix theory. We use our new method with the tight-binding model to demonstrate 
its convergence for both discrele and conlinuous dirtribulions of disorder. We also 
demonstrate its use in investigating the weak disorder limit. 

1. Introduction 

The propagation of waves in one-dimensional (1D) disordered systems has been stud- 
ied extensively. The motivation for such studies is not only their academic interest but 
also an increasing need due to the development of a wide range of quasi-lD materi- 
als. The localization length is one of the most important quantities in describing the 
wave function of a disordered system, and for ID systems, both numerical simulation 
(Mackinnon and Kramer 1983, Pichard and Sarma 1981, Azbel 1980) and analytic 
approaches (Landauer 1970, Theodorou and a h e n  1976, Kappus and Wegner 1981, 
Pendry 1982a,b, Kirkmann and Pendry 1984 a,b, Derrida and Gardner 1984, Slevin 
and Pendry 1988) are well developed. There are also a large number of publications 
in the literature that investigate the density of states (or eigen-energy spectra) of dis- 
ordered chains (Schmidt 1957, Halperin 1965; for a review of earlier works see Dean 
1972, Butler 1973, Goncalves da Silva and Koiller 1981, Koiller el a1 1983, Kirkmann 
and Pendry 1984a. Slevin and Pendry 1988, ?an and Yang 1988, Nieuwenhuizen and 
Luck 1985). 

The transport properties of a disordered system are determined by its reflection 
and transmission coefficients. The transmission coefficient is usually considered to be 
the most useful of the two due to its simple relation to important physical quantities, 
such as the localization length, conductivity and density of states. However, the 
reflection coefficient is a more tractable quantity (Pendry and Barnes 1989, Barnes 
and Luck 1990). In the longlength limit its moments become stationary and are easily 
calculated. Hence, we may expect that analysis of the properties of ID disordered 
systems can be much simplified if expressed in terms of the reflection coefficient of 
the system. 
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In this paper, we prove that the inverse localization length (Lyapunov exponent) 
and the integrated density of states may be expanded in terms of the stationary 
moments of the reflection coefficient of a disordered chain, and show how these 
moments may be found exactly using the reflection transfer matrix introduced by 
Pendry and Barnes (1989). The localization length is the reciprocal of the Lyapunov 
exponent and the density of states can be found by numerical differentiation of the 
integrated density of states. Hence, we obtain a new method for calculating the 
localization length and density of states of disordered 1D system. 

Although approaches already exist for calculating the localization length and den- 
sity of states we believe that our new method is a useful contribution to this field. 
Firstly, the moment expansion provides LIS with a simple picture for the make-up of 
the localization length and density of states in terms of elementary multiplescattering 
paths. Secondly, the new method has a good convergence rate. Convergence is a vital 
factor in the study of disordered systems. For example, near the weak disorder limit, 
the localization length is very large and it is impossible to obtain accurate results by 
numerical simulation because chains much longer than the localization length must be 
considered. Finally, the method provides a new basis for exact numerical calculation 
and can be used to give analytic results in limiting cases. 

The paper is arranged as follows. In section 2, we present the formalism for 
our new method. In section 3, we discuss its convergence for the tight-binding 
model and calculate the localization length and the density of states for both discrete 
and continuous distributions of disorder. In section 4, we use the new method to 
investigate the weak disorder limit of the tight-binding model. A brief conclusion is 
given in section 5. 

2. Formalism 

Consider a one-dimensional disordered chain sandwiched between two semi-infinite 
ordered leads capable of supporting propagating waves. If the amplitude of a wave 
incident on the disordered chain is vi then the amplitudes of the transmitted and 
reRected waves, vt and vr, are related through the reflection and transmission coeffi- 
cients: v, = Rvi and vt = Tvi. Suppose that the disordered chain further decomposes 
into L statistically independent units. If we add an (L + 1)th unit to the disordered 
chain we may use the multiple-scattering picture shown in figure 1 to find the re- 
flection and transmission coefficients of the composite system. For the reflection 
coefficient we find 

and for the transmission coefficient we find 

m 

TL+l = TL'Lt1 c ( r L + I R L r  
"=U 
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where the superscript + indicates that a wave has been scattered in the positive 
direction and the superscript - indicates that a wave has been scattered in the 
negative direction as indicated in figure 2. Both series here are convergent for 

Ir&PLI < 1. (2.3) 

1 

+ r+ 

i R  c 
t + ~ ( i  R)i  

Tt- 

Tr- Rt- 

T(f R) i  r+ 
Figure 1. Multiple scattering between a single unit 
and L units. 

Figure 2. Scattering from a single unit. 

The complex Lyapunov exponent of a disordered senu-inhite chain = -y(E) + 
ilrN(E) has real part y ( E )  which is the Lyapunov exponent and imaginary part N ( E )  
which is the integrated density of states. It is well known that this quantity is related 
to the transmission coefficient of a disordered chain through 

If we now consider an ensemble of disordered systems in which the complex Lyapunov 
exponent self-averages we may rewrite this expression in the form 

- 7(E) + ixN(E) = L-CO lim (In TL/TL- (2.5) 

where the notation ( ) denotes an ensemble average. Substituting equation (2.2) into 
(2.5) we find 

In the limit L + 41 the moments of the reflection coefficient ( R t )  become stationary: 

This is because the important length scale for the reflection coefficient is the localiza- 
tion length or penetration depth not the total length. Hence, taking the limit L -+ CO 

in equation (26) we find 
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In equation (28) we now have a simple expression for the Lyapunov exponent and 
the integrated density of states in terms of a convergent series The first term on 
the left-hand side of equation (2.8) gives the contribution due to forward scattering 
(Roberts and Pendry 1990) and subsequent terms give connibutions due to higher- 
order multiple scattering. 

What we must do now is to show how the moments (R",) may be found. Pendry 
and Barnes (1989) have provided a simple way to do this. Following their work, we 
define a vector whose elements comprise all integer powers of RL: 

By expanding each integer power of RLtl as a power series in RL, we can derive 
the transfer matrix relation (see Pendry and Barnes 1989) 

V L t 1  = m L t l v L .  (2.10) 

( m L ) n + i , m  = Cmn,m-im,,i (2.11) 

W 1 , "  = rLf ( m L ) I *  = ftt,-c.,-,"-' (2.12) 

The elements of mL are easily calculated from the recursion relation 
m 

i=l 

using the initial conditions 

derived from equation (21). We will refer to m as the reflection transfer matrix. 
"!king the ensemble average of equation (2.9) and letting L + 00 

lim (VL+J = F p l L t l V L )  (2.13) 
L-m 

we find the stationary equation 

(2.14) 

The elements of the ensemble average matrix (m) may be found from the distribution 
of the reflection and transmission coefficients of a single unit. It may be done either 
analytically or numerically depending on the complexity of the distribution. For the 
symmetric exponential alloy the matrix is particularly simple; equation (214) reduces 
to a five-term recursion relation (Barnes and Luck 1990). In order to solve for (RL)  
we truncate (m) to an N x N matrix and solve the set of N linear equations: 

N x((m),, - 6,E,,)(R",) = -(rt") for n = 1,2,. . . , N  (215) 
m = l  

using a standard numerical package. The notation 6;., used here denotes a Kro- 
necker delta The momens of the reflection coefficient (Fm) converge rapidly with 
increasing n and we choose N to be sufficiently large that we may calculate the 
complex Lyapunov exponent from equation (2.8) to desired accuracy. 
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3. Numerical results for the tight-binding model 

In this section, we use our new method to obtain the density of states and localization 
length for the tight-binding model. 

We consider a chain of atoms in which the wave function amplitudes are given by 
the tight-binding Hamiltonian 

V+"+i + V k i  = (E-fn)+n. (3.1) 

The chain consists of a central disordered region, in which the orbital site energies fn 

are statistically independent with distribution P(fn), and semi-infinite leads, in which 
the site energies are constant with fn = e,,. Solving equation (3.1) in the leads gives 

E = f U + 2 V c o s k  k=[O,x]. ( 3 4  

In the disordered region we deEne a single disordered unit to consist of a single site 
and a single bond to its left. Such units have reflection and transmission coefficients 
of the form 

21 + p =,*- 1 r - = e  r i6 r+ = - 
1 - i6 1 - i6 (3.3) 

where 

6 = (6  - fu)/2sink. (3.4) 

In this model the convergence criterion equation (23) is only guaranteed if the 
incident wavevector k is real since this ensures r;+l < 1 from equations (3.3)-(3.4) 
and RL < 1 from unitarity. Hence, from equation (3.2) for any particular value of 
e,, convergence is only guaranteed in the band of energies IE - f,,1 < 2V. Therefore 
at any particular energy we must pick a value of c,, that ensures convergence. We 
can do this because both the density of states and localization length are inherent 
properties of the disordered system and therefore independent of the value of e,,. 

We have calculated the density of states and localization length using the new 
method for both continuous and discrete distributions of site energies. As an example 
of a continuous distribution, we consider the Anderson distribution 

if If1 w/2  
otherwise (3.5) 

with W = 1. For this distribution we average the reflection transfer matrix numer- 
ically. We then solve the linear equations (2.15) for the stationary moments of the 
reflection coefficient and use them to sum equation (28). The localization length 
is then the inverse of the Lyapunov exponent and the density of states found by 
numerically differentiating the integrated density of staIes. This differentiation is 
complicated for weak disorder by the existence of anomalies. Section 4 deals with 
this problem. Figure 3 shows how the density of states for this model converges with 
increasing N = 5,20,50 in equation (215). Figure 4 shows the convergence of the 
localization length with N = 3,5,20. We see that both the localization length and 
the density of states converge very rapidly with increasing N .  However, the density 
of states converges less rapidly than the localization length, so we may conclude that 
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Figmm 3. Plot 01 the dmiIy of states of lhe Ander- 
son model wilh W = l .  The curves show the con- 
vergence of our method with increasing dimension 
of the enscmblc average transfer matrix: N = 5, 
dotted curve; N = 10, broken curve; N = 50, lull 
curve. 

Flgum 4. Plot of the localization length of the 
Anderson d e l  with W = l .  Thsc c u m  show 
the convergence of our method with N = 3, dotted 
curve; N = 5, broken CUM; N = 20, full curve. 

it has a stronger dependence upon multiple scattering. It can also be seen that the 
convergence rate of our theory has a strong dependence on energy for both the den- 
sity of states and the localization length. The convergence is slowest within the band 
tail. This is easy to understand since scattering near a band edge is always very strong 
even for weak disorder. 

As an example of a discrete disuibution of disorder, we consider a random binary 
alloy with distribution function defined by 

with A = 2 The random binary alloy has been studied extensively. Numerical 
simulation and analytical work show that the integrated density of states and Lyapunw 
exponent of these systems have a very rich structure (Halperin 1965, Butler 1973, 
Koiller et a1 1983, Makler ef a1 1985, Nieuwenhuizen and Luck 1985, l l n  and Yang 
1988). Both quantities contain power law singularities of the form N ( E + x )  - N ( E )  N 
kl‘ with n > 0 at a dense set of energies. Clearly this has the consequence that, 
at or near these energies, the density of states and localization length are not well 
represented by a finite truncation of the moment expansion (28). particularly in the 
circumstance that a < 1. However, away from these points our method converges 
very well and near these points the detail of the structure begins to appear as we look 
on a finer energy scale and increase N. We have used figures 5 , 6  to demonstrate this 
point. The convergence of the density of states is complicated by the appearance of 
unphysical negative values for small N .  However, these only appear at energy gaps 
and disappear with increasing N .  
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Flgure 5. The loealiition length of a random bi- 
naly alloy with: A = 2 calculated using our theory 
with N = 10, dotted c u m ;  N = 20, broken curve; 
N = 50, full CUNe. 

Figure 6. The density of stat= of a random binary 
alloy with A = 2 calculated using OUT method with 
N = 10, dotted cum; N = 20, broken curve; 
N = 80, full cuwe. 

4. The weak disorder limit 

In this section we will look at the weak disorder limit of the tight-binding model. 
This limit has been studied extensively and it is known that the complex Lyapunov 
exponent contains anomalies at special energies (Kappus and Wegner 1981, Pendry 
1982a, Lambert 1984, Derrida and Gardner 1984, Bovier and Klein 1988). However, 
in this section we hope to show that our new method can give these weak disorder 
results in a simple and transparent manner. 

We split the ensemble average reflection transfer matrix into two parts: a zero- 
disorder part and a perturbing part due to the disorder 

(m) = m(’) + m‘. (4.1) 

In the tight-binding model, the zero-disorder part has the diagonal form 

(4.2) 

Hence, substituting equations (4.1), (4.2) into the stationary equation (2.14) and using 
first-order perturbation theory we find 

(4.3) 

If we assume that we have a symmetric distribution of site potentials then moments 
(r-”)  take the form 

( r -=)  s (-l)”(62”)e2”(2”) (r-*-’) (-I)”@ - 1)(62”)e2”(2”-1) (4.4) 
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to leading order from equations (3.3) and (3.4). 
Now we can substitute these values for the moments of the reflection coefficient 

into our expression for the complex Lyapunov exponent equation (28). To leading 
order this gives 

- y(E) + ixN(E) TJ -(6')/2 + iG (4.5) 

which is simply the result of Thouless (1979). An important point to note here, in 
terms of the physical interpretation of this result, is that it is the result we would 
have obtained had we used only the forward scattering term in equation (28). 

In carrying out the perturbation theory method here we have clearly ignored the 
fact that the Wavevector k may be rationally related to T, e.g k = qn/u. If it is, 
then the zero-disorder reflection transfer matrix will contain degeneracies that we 
must take into account. Using degenerate perturbation theory yields the general 
result that, to leading order at a point k = qxJu in the band, the moments with 
n = integer x U are anomalously larger than their value at neighbouring points not 
rationally related to x. This fact, in conjunction with the moment expansion for the 
complex Lyapunov exponent, equation (2.8). explains the occurrence of anomalies in 
the complex Lyapunov exponent at all points in the band for which the wavevector is 
rationally related to T. The most striking occurrence of this type of anomaly occurs 
at the band centre k = n/2 where the eigenvalues of m(") are degenerate on either 1 
or -1. The degenerate subspace with eigenvalue -1 gives (RZ-') = O +  and 
that with eigenvalue 1 yields the three-term recursion relation 

(2n - l){R:-') + 12n(RZ) + (2n + I ) ( R ~ + ' )  + O((6')) = 0. (4.6) 

Solving this equation numerically we find that {RL)  converges quickly to 
0.0861 068... + 13((6~)). It does not become zero in the limit of zero disorder as 
it does at neighbouring irrational points. Hence, substituting this value into equa- 
tion (2.8) the complex Lyapunov exponent at the band centre takes the form 

-y(E = O)+ixN(E = 0) = -- (") + ix/2 2.18844 (4.7) 

to order (@). For the Anderson model this gives y(E = 0) = W2/105.045 in exact 
agreement with the published results for this anomaly (Czycholl el al 1981, Kappus 
and Wegner 1981, Kirkmann and Pendry 1984a,b, Derrida and Gardner 1984) 

S. Conclusion 

In this paper we have presented a new method for calculating the localization length 
and density of states of disordered one-dimensional chains which we feel makes a 
useful contribution to this field. The method uses an expansion for the complex Lya- 
punov exponent in terms of the stationary moments of the reflection coefficient. It has 
a simple conceptual basis in multiple-scattering theory. For continuous distributions 
of disorder our method is exact and highly convergent. For discrete distributions such 
as the binary alloy the method has good convergence away from singular points in the 
band. At or near these points, however, the structure and weight of the singularities 
is approximated. 
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We look at the weak disorder limit of the tight-binding model and show how 
simple first-order perturbation theory applied to the reflection transfer matrix demon- 
strates the existence of anomalies in the complex Lyapunov exponent at all points in 
the band where the wavevector is rationally related to T. In particular we retrieve 
the band centre anomaly. 

Finally, we mention that it is possible to consider our method for any dimension 
since it is easy to translate equations (2.1), (22),  (25) to higher dimensions. 
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